Article ID Journal Published Year Pages File Type
1745887 Journal of Cleaner Production 2011 8 Pages PDF
Abstract

Hydrogenation units are often operated at high pressure, requiring the use of compressors which are one of the most expensive chemical processing equipment. Optimizing a hydrogen network should therefore take into consideration not only purity and flowrate constraints but also pressure requirements. In this paper, based on the hydrogen surplus diagram approach, the average pressure profiles of hydrogen sources and sinks are proposed through the introduction of a system’s minimum pressure drop Δp. Combined with the traditional purity profiles, whether a source can meet a sink either for hydrogen concentration or for pressure requirements can be determined intuitively. In cases where the pressure of a source is not sufficient for a sink, installing a hydrogen compressor or using another source with higher purity and pressure could be potential solutions. A cost equation is established to determine which of the two solutions is economically more viable. For different matching situations between sources and sinks, strategies for optimum placement of compression equipment within a given hydrogen network are proposed. A case study is used to illustrate the application and effectiveness of the proposed method.

Related Topics
Physical Sciences and Engineering Energy Renewable Energy, Sustainability and the Environment
Authors
, , ,