Article ID Journal Published Year Pages File Type
1745930 Journal of Cleaner Production 2011 9 Pages PDF
Abstract

Modern industrial environmental management encompasses life-cycle thinking. This entails considering not only the emissions and resource use of the company’s production processes, but also the environmental consequences of all processes related to a product’s life cycle. However, no single actor can influence the whole life cycle of a product. To be effective, analysis methods intended to support improvement actions should therefore also consider the decision makers’ power to influence.Regarding the life cycle of a product, there are at least as many perspectives on life-cycle thinking as there are actors. This paper presents an approach with which manufacturing decision makers can sharpen the focus in life-cycle assessment (LCA) from a conventional ‘products or services’ emphasis to a company’s manufacturing processes. The method has been developed by combining knowledge gained from earlier LCA studies with new empirical findings from an LCA study of an SKF manufacturing line.We demonstrate how system boundaries and functional units in an LCA can be defined when adding the perspective of a manufacturing decision maker to the product life-cycle perspective. Such analysis helps manufacturing decision makers identify improvement potentials in their spheres of influence, by focusing on the environmental consequences of energy and material losses in manufacturing rather than merely accounting for the contributions of individual stages of the life cycle to the overall environmental impact. The method identifies and directly relates the environmental consequences of emissions or raw material inputs in the product life cycle to manufacturing processes. In doing so, the holistic systems perspective in LCA is somewhat diminished in favor of the relevance of results to manufacturing decision makers.

► LCA method for assessing the environmental performance of a manufacturing system. ► LCA functional unit and system boundaries formulated for a manufacturing process. ► All hotspots that are identified lies within the actor’s sphere of influence. ► Manufacturing decision makers can identify their improvement potentials.

Related Topics
Physical Sciences and Engineering Energy Renewable Energy, Sustainability and the Environment
Authors
, , ,