Article ID Journal Published Year Pages File Type
1747724 Journal of the Energy Institute 2014 8 Pages PDF
Abstract

In this paper, a gas turbine cycle is modeled to investigate the effects of important operating parameters like compressor inlet temperature (CIT), turbine inlet temperature (TIT) and pressure ratio (PR) on the overall cycle performance and CO2 emissions. Such effects are also investigated on the exergy destruction and exergy efficiency of the cycle components. Furthermore, multiple polynomial regression models are developed to correlate the response variables (performance characteristics) and predictor variables (operating parameters). The operating parameters are then optimized. According to the results, operating parameters have a significant effect on the cycle performance and CO2 emissions. The largest exergy destruction is found in the combustion chamber with lowest exergy efficiency. The regression models have appeared to be a good estimator of the response variables. The optimal operating parameters for maximum performance have been determined as 288 K for CIT, 1600 K for TIT and 23.2 for PR.

Related Topics
Physical Sciences and Engineering Energy Energy Engineering and Power Technology
Authors
, , , ,