Article ID Journal Published Year Pages File Type
1747819 Natural Gas Industry B 2015 6 Pages PDF
Abstract

Flexible composite pipes are advantageous in ultra high strength, high modulus, pH and corrosion resistance and light weight, but there are still some hidden safety troubles because they are poorer in thermostable capacity. Therefore, test samples of flexible composite pipes were prepared with high-temperature polythene (PE-RT) as the neck bush and aramid fiber as the reinforcement layer. Experimental study was conducted by using HPHT vessel and differential thermal scanner for different working conditions, different temperatures, whole-pipe pressure-bearing capacity and 1000 h viability. It is shown by the environmental compatibility test that high temperature has little effect on the weight, Vicat softening temperature, mechanical properties and structures of neck bush PE-RT, but exerts an obvious effect on the tensility and whole-pipe water pressure blasting of the reinforcement aramid fiber. Besides, the drop of whole-pipe pressure-bearing capacity is caused by deformation and breaking of aramid fibers when the reinforcement layer is under the force of internal pressure. Finally, disorientation and crystallization of molecular thermal motion occur with the rise of temperature, so amorphous orientation reduces, crystallinity factor and crystalline orientation factor increase gradually, thus, disorientation of macromolecular chains increases and tensile strength decreases. It is concluded that this type of flexible composite pipe can smoothly pass 1000 h viability test. And it is recommended that it be used in the situations with temperature not higher than 95 °C and internal pressure not higher than 4 MPa.

Related Topics
Physical Sciences and Engineering Energy Energy Engineering and Power Technology
Authors
, , , , , , ,