Article ID Journal Published Year Pages File Type
1751253 Renewable and Sustainable Energy Reviews 2012 9 Pages PDF
Abstract
Since the blades are one of the most critical components of a wind turbine, representative samples must be experimentally tested in order to ensure that the actual performance of the blades is consistent with their specifications. In particular, it must be demonstrated that the blade can withstand both the ultimate loads and the fatigue loads to which the blade is expected to be subjected during its design service life. In general, there are basically two types of blade testing: static testing and fatigue (or dynamic) testing. This paper includes a summary review of different utility-scale wind turbine blade testing methods and the initial design study of a novel concept for tri-axial testing of large wind turbine blades. This new design is based on a blade testing method that excites the blade in flap-wise and edgewise direction simultaneously. The flap motion of the blade is caused by a dual-axis blade resonance excitation system (BREX). Edgewise motion is delivered by the use of two inclined hydraulic actuators and linear guide rail system is used to move the inclined actuators in the flap-wise direction along the blade motion. The hydraulic system and linear guide rail requirements are analyzed and an initial cost estimate of the proposed system is presented. Recommendations for future work on this proposed system are given in the final section of this work.
Related Topics
Physical Sciences and Engineering Energy Renewable Energy, Sustainability and the Environment
Authors
, , , ,