Article ID Journal Published Year Pages File Type
1752019 Renewable and Sustainable Energy Reviews 2009 8 Pages PDF
Abstract

Stand-alone hybrid renewable energy systems usually incur lower costs and demonstrate higher reliability than photovoltaic (PV) or wind systems. The most usual systems are PV–Wind–Battery and PV–Diesel–Battery. Energy storage is usually in batteries (normally of the lead-acid type). Another possible storage alternative, such as hydrogen, is not currently economically viable, given the high cost of the electrolyzers and fuel cells and the low efficiency in the electricity–hydrogen–electricity conversion. When the design of these systems is carried out, it is usually done resolve an optimization problem in which the Net Present Cost (NPC) is minimized or, in some cases, in relation to the Levelized Cost of Energy (LCE). The correct resolution of this optimization problem is a complex task because of the high number of variables and the non-linearity in the performance of some of the system components. This paper revises the simulation and optimization techniques, as well as the tools existing that are needed to simulate and design stand-alone hybrid systems for the generation of electricity.

Related Topics
Physical Sciences and Engineering Energy Renewable Energy, Sustainability and the Environment
Authors
, ,