Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1753019 | International Journal of Coal Geology | 2014 | 19 Pages |
Abstract
Reservoir simulation with multi-well history matching is a tedious process as important coal properties that affect wells' production characteristics are spatially variable across the seam. The common practice is to change various properties at the well blocks during the history matching process, and assume that they are uniform across the domain of interest. This process, however, often does not produce realistic and effective results for well or coal reservoir management. In this work, a multi-level approach to coal bed reservoir simulation is demonstrated for a group of coalbed methane wells in the Illinois Basin producing from the Seelyville Coal Member of the Linton Formation of the Carbondale Group (Pennsylvanian) in Indiana. This approach includes, in order, gas and water deliverability analyses of wells, geostatistical simulation and co-simulation, and coal bed reservoir simulation. It is shown that a reservoir model, which utilizes the geostatistical maps of important coal properties, is effective for simultaneous history matching of all wells, and eliminates the need for guessing and changing values of coal properties at and around individual well blocks. This methodology also provides realistic distributions of reservoir parameters and how they change during gas depletion, and thus aids in coal seam and coal gas management.
Related Topics
Physical Sciences and Engineering
Earth and Planetary Sciences
Economic Geology
Authors
C. Ãzgen Karacan, Agnieszka Drobniak, Maria Mastalerz,