Article ID Journal Published Year Pages File Type
1754755 Journal of Petroleum Science and Engineering 2015 12 Pages PDF
Abstract
In this study, a novel approach for constructing adaptive surrogate models with application in production optimization problem is proposed. A dynamic Artificial Neural Networks (ANNs) is employed as the approximation function while the training is performed using an adaptive sampling algorithm. Multi-ANNs are initially trained using a small data set generated by a space filling sequential design. Then, the state-of-the-art adaptive sampling algorithm recursively adds training points to enhance prediction accuracy of the surrogate model using minimum number of expensive objective function evaluations. Jackknifing and Cross Validation (CV) methods are used during the recursive training and network assessment stages. The developed methodology is employed to optimize production on the bench marking PUNQ-S3 reservoir model. The Genetic Algorithm (GA) is used as the optimization algorithm in this study. Computational results confirm that the developed adaptive surrogate model outperforms the conventional one-shot approach achieving greater prediction accuracy while substantially reduces the computational cost. Performance of the production optimization process is investigated when the objective function evaluations are performed using the actual reservoir model and/or the surrogate model. The results show that the proposed surrogate modeling approach by providing a fast approximation of the actual reservoir simulation model with a good accuracy enhances the whole optimization process.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Economic Geology
Authors
, , ,