Article ID Journal Published Year Pages File Type
1759652 Ultrasonics 2010 7 Pages PDF
Abstract

This paper introduces a novel method for designing the transducer of a highly directional ultrasonic range sensor for detecting obstacles in mobile robot applications. The transducer consists of wave generation, amplification, and radiation sections, and a countermass. The operating principle of this design is based on the parametric array method where the frequency difference between two ultrasonic waves is used to generate a highly directional low-frequency wave with a small aperture. The aim of this study was to design an optimal transducer to generate the two simultaneous longitudinal modes efficiently. We first derived an appropriate mathematical model by combining the continuum model of a bar and countermass with the compatibility condition between a piezoelectric actuator and a linear horn. Then we determined the optimal length of the aluminum horn and the piezoelectric actuator using a finite element method. The proposed sensor exhibited a half-power bandwidth of less than ±1.3° at 44.8 kHz, a much higher directivity than existing conventional ultrasonic range sensors.

Related Topics
Physical Sciences and Engineering Physics and Astronomy Acoustics and Ultrasonics
Authors
, , , ,