Article ID Journal Published Year Pages File Type
1759927 Ultrasonics 2006 10 Pages PDF
Abstract

The ultrasonic attenuation coefficient of a fluid or solid is an acoustic parameter routinely estimated for the purpose of materials characterization and defect/disease detection. This paper describes a broadband attenuation coefficient estimation technique that combines two established estimation approaches. The key elements of these two approaches are: (1) the use of magnitude spectrum ratios of front surface, first back surface, and second back surface reflections from interfaces of materials with plate-like geometries, and (2) the use of an experimental diffraction correction approach to avoid diffraction losses. The combined estimation approach simplifies the attenuation coefficient estimation process by eliminating the need to explicitly make diffraction corrections or calculate reflection/transmission coefficients. The approach yields estimates of the attenuation coefficient, reflection coefficient, and material density. Models, experimental procedures, and signal analysis procedures, which support implementation of the approach, are presented. Attenuation coefficient and reflection coefficient estimates are presented for water and solid samples with estimates based on measurements made with multiple transducers.

Related Topics
Physical Sciences and Engineering Physics and Astronomy Acoustics and Ultrasonics
Authors
, , ,