Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1760610 | Ultrasound in Medicine & Biology | 2012 | 10 Pages |
Abstract
This study investigated the characteristics of the secondary bubble cluster produced by an electrohydraulic lithotripter using high-speed imaging and passive cavitation detection techniques. The results showed that (i) the discrepancy of the collapse time between near a flat rigid boundary and in a free field of the secondary bubble cluster was not as significant as that by the primary one; (ii) the secondary bubble clusters were small but in a high bubble density and nonuniform in distribution, and they did not expand and aggregate significantly near a rigid boundary; and (iii) the corresponding bubble collapse was weaker with few microjet formation and bubble rebound. By applying a strong suction flow near the electrode tip, the production of the secondary shock wave (SW) and induced bubble cluster could be disturbed significantly, but without influence on the primary ones. Consequently, stone fragmentation efficiency was reduced from 41.2 ± 7.1% to 32.2 ± 3.5% after 250 shocks (p < 0.05). Altogether, these observations suggest that the secondary bubble cluster produced by an electrohydraulic lithotripter may contribute to its ability for effective stone fragmentation.
Related Topics
Physical Sciences and Engineering
Physics and Astronomy
Acoustics and Ultrasonics
Authors
Yufeng Zhou, Jun Qin, Pei Zhong,