Article ID Journal Published Year Pages File Type
1762074 Ultrasound in Medicine & Biology 2010 12 Pages PDF
Abstract
Porous media such as cancellous bone often support the simultaneous propagation of two compressional waves. When small bone samples are interrogated in through-transmission with broadband sources, these two waves often overlap in time. The modified least-squares Prony's (MLSP) method was tested for decomposing a 500 kHz-center-frequency signal containing two overlapping components: one passing through a polycarbonate plate (to produce the “fast” wave) and another passing through a cancellous-bone-mimicking phantom (to produce the “slow” wave). The MLSP method yielded estimates of attenuation slopes accurate to within 7% (polycarbonate plate) and 2% (cancellous bone phantom). The MLSP method yielded estimates of phase velocities accurate to within 1.5% (both media). The MLSP method was also tested on simulated data generated using attenuation slopes and phase velocities corresponding to bovine cancellous bone. Throughout broad ranges of signal-to-noise ratio (SNR), the MLSP method yielded estimates of attenuation slope that were accurate to within 1.0% and estimates of phase velocity that were accurate to within 4.3% (fast wave) and 1.3% (slow wave). (E-mail: keith.wear@fda.hhs.gov).
Related Topics
Physical Sciences and Engineering Physics and Astronomy Acoustics and Ultrasonics
Authors
,