Article ID Journal Published Year Pages File Type
1763368 Advances in Space Research 2016 14 Pages PDF
Abstract
The mitigation of ionospheric delay is still of crucial interest in GNSS positioning, especially in precise solutions such as instantaneous RTK positioning. Thus, several effective algorithms and functional models were developed, and also numerous investigations of ionospheric correction properties in RTK positioning have been performed so far. One of the most highly effective approaches in precise relative positioning is the application of the ionosphere-weighted model with network-derived corrections. This contribution investigates the impact of the accuracy of the network ionospheric corrections on time-to-fix in RTK-OTF positioning. Also, an attempt has been made to estimate the desirable accuracy of the network ionospheric corrections, allowing for reliable instantaneous ambiguity resolution. The experiment is based on a multi-baseline GPS RTK positioning supported with network-derived ionospheric corrections for medium length baselines. The results show that in such scenario, the double-differenced ionospheric correction residuals should not exceed ∼1/3 of the L1 wavelength for successful single-epoch ambiguity resolution.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Space and Planetary Science
Authors
,