Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1763598 | Advances in Space Research | 2015 | 13 Pages |
The spin-axis stabilization of an axisymmetric spacecraft by two control torques perpendicular to the symmetry axis is addressed. Two control laws are designed to align the symmetry axis along a desired inertial direction despite the revolution around the symmetry axis. The first controller takes a saturated proportional-derivative form and can stabilize the spin-axis to the desired direction with a priori bounded torques in the absence of modeling uncertainties. In order to achieve better robustness, an adaptive controller is then designed to account for the inertia uncertainties and disturbances, in addition to actuator saturation. Numerical examples are presented to demonstrate the advantageous features of the proposed algorithm compared with conventional spin-axis stabilization methods.