Article ID Journal Published Year Pages File Type
1764488 Advances in Space Research 2014 12 Pages PDF
Abstract

Recently launched hyper-spectral instrumentation with ever-increasing data return capabilities deliver the remote-sensing data to characterize planetary soils with increased precision, thus generating the need to classify the returned data in an efficient way for further specialized analysis and detection of features of interest. This paper investigates how lunar near-infrared spectra generated by the SIR-2 on Chandrayaan-1 can be classified into distinctive groups of similar spectra with automated feature extraction algorithms. As common spectral parameters for the SIR-2 spectra, two absorption features near 1300 nm and 2000 and their characteristics provide 10 variables which are used in two different unsupervised clustering methods, the mean-shift clustering algorithm and the recently developed graph cut-based clustering algorithm by Müller et al. (2012). The spectra used in this paper were taken on the lunar near side centering around the Imbrium region of the Moon. More than 100,000 spectra were analyzed.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Space and Planetary Science
Authors
, , , , ,