Article ID Journal Published Year Pages File Type
1764786 Advances in Space Research 2014 12 Pages PDF
Abstract
As a second goal, the isotropic spectra of both trapped models are re-casted into anisotropic spectra by modulating them with a measurement derived angular formalism which is applicable to trapped protons. Since at LEO electrons have minimal exposure contribution, the paper ignores the AE8 and AE9 component of the models and presents the angular validation of AP8 and AP9 against measurements from the compact environment anomaly sensor (CEASE) science instrument package, flown onboard the tri-service experiment-5 (TSX-5) satellite during the period of June 2000-July 2006. The spin stabilized satellite was flown in a 410 × 1710 km, 69° inclination orbit, allowing it to be exposed to a broad range of LEO regime. Particular emphasize is put on the validation of proton flux profiles at differential 40 MeV and integral >40 MeV, in the vicinity of SAA where protons exhibit east-west (EW) anisotropy and have a relatively narrow pitch angle distribution. Within SAA, the EW anisotropy results in different level of exposure to each side of CEASE instrument package, allowing the extraction of anisotropic proton spectra from the measurements. While the magnitude of the EW effect at LEO depends on a multitude of factors such as trapped proton energy, orientation of the spacecraft along the velocity vector and altitude of the spacecraft, for this part, the paper draws quantitative conclusions on the combined effect of proton pitch angle and EW anomaly.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Space and Planetary Science
Authors
,