Article ID Journal Published Year Pages File Type
1764959 Advances in Space Research 2011 9 Pages PDF
Abstract

This paper presents the preliminary systems design of a pole-sitter. This is a spacecraft that hovers over an Earth pole, creating a platform for full hemispheric observation of the polar regions, as well as direct-link telecommunications. To provide the necessary thrust, a hybrid propulsion system combines a solar sail with a more mature solar electric propulsion (SEP) thruster. Previous work by the authors showed that the combination of the two allows lower propellant mass fractions, at the cost of increased system complexity. This paper compares the pure SEP spacecraft with the hybrid spacecraft in terms of the launch mass necessary to deliver a certain payload for a given mission duration. A mass budget is proposed, and the conditions investigated under which the hybrid sail saves on the initial spacecraft initial mass. It is found that the hybrid spacecraft with near- to mid-term sail technology has a lower initial mass than the SEP case if the mission duration is 7 years or more, with greater benefits for longer duration missions. The hybrid spacecraft with far-term sail technology outperforms the pure SEP case even for short missions.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Space and Planetary Science
Authors
, ,