Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1765001 | Advances in Space Research | 2012 | 8 Pages |
Abstract
Fiber optic probes coupled to a Fourier Transform Infrared (FTIR) spectrometer allow sample analysis without the need to place the sample directly into the instrument. This is particularly attractive for spacecraft lander/rover applications where the additional mechanics, mass and cost associated with excavating and placing a small sample in a sample bay is not desirable. This paper uses numerical modeling to analyze fiber bundle array configurations and fiber numerical apertures to determine their light gathering efficiency and sample size as a function of probe-to-sample distance. The model was validated against experimental measurements for a selection of off the shelf fiber optic probes. The collection efficiency of a probe can be optimized by using a hexagonal packing method, and by using fibers with high numerical apertures. By increasing the numerical aperture of the fibers used in our model probes from 0.2 to 0.5, we were able to increase the collection efficiency of a seven fiber probe from 4.5% to 9.5%, with the peak collection efficiency corresponding to a spot size of diameter 3Â mm.
Related Topics
Physical Sciences and Engineering
Earth and Planetary Sciences
Space and Planetary Science
Authors
R.P. Pilgrim, R.K. Ulrich,