Article ID Journal Published Year Pages File Type
1765019 Advances in Space Research 2012 8 Pages PDF
Abstract

Understanding the interactions and propagations of high energy protons and heavy ions are essential when trying to estimate the biological effects of Galactic Cosmic Rays (GCR) and Solar Particle Events (SPE) on personnel in space. To be able to calculate the shielding properties of different materials and radiation risks, particle and heavy ion transport codes are needed. In all particle and heavy ion transport codes, the probability function that a projectile particle will collide within a certain distance x in the matter depends on the total reaction cross sections, and the calculated partial fragmentation cross sections scale with the total reaction cross sections. It is therefore crucial that accurate total reaction cross section models are used in the transport calculations. In this paper, different models for calculating nucleon–nucleus and nucleus–nucleus total reaction cross sections are compared with each other and with measurements. The uncertainties in the calculations with the different models are discussed, as well as their overall performances with respect to the available experimental data. Finally, a new compilation of experimental data is briefly presented.

Keywords
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Space and Planetary Science
Authors
, , , , , , ,