Article ID Journal Published Year Pages File Type
1765701 Advances in Space Research 2009 4 Pages PDF
Abstract

The treatment of sodium, Na, and potassium, K, presents a challenge in space agriculture material recycling, as humans require Na and plants cannot grow at high Na concentrations. Hence, we are proposing the use of marine macro-algae to harvest K and other minerals from composted human waste. Ulva was selected for this feasibility study, since it tolerates a wide range of salinity levels. Growth capability of Ulva was examined under various total salinity levels and proportions of Na and K in the incubation medium. A homeostatic feature of Ulva was found in its intra-cellular concentration of Na and K, and in the intra-cellular ratio between Na and K (at 0.58 ± 0.30, lower than that of human metabolic waste). Intracellular concentration of K in Ulva is 20 times higher than seawater. Because of these characteristics, Ulva is a good candidate species for space agriculture.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Space and Planetary Science
Authors
, , , , ,