Article ID Journal Published Year Pages File Type
1766460 Advances in Space Research 2009 13 Pages PDF
Abstract

A hybrid optimization method is developed for fuel-optimal reconfigurations of a group of satellites flying in formation. The genetic algorithm performs a global search to find two-impulse trajectories, and primer vector analysis finds multiple-impulsive local optimal trajectories with the two-impulse trajectories as initial guesses. Hybrid optimization finds globally optimal trajectories for formation reconfigurations, including formation resizing, reassignment and reorientation maneuvers. Multiple-impulse trajectories reduce the fuel consumption from the two-impulse trajectories by up to 4.4% for those maneuvers. In real missions, satellites can follow two-impulse trajectories to gain the advantage of a smaller number of impulses, with the cost of slightly more propellant. The qualitative characteristics of the optimal trajectories are analyzed from the number of optimal trajectories found by hybrid optimization.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Space and Planetary Science
Authors
, , , ,