Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1766460 | Advances in Space Research | 2009 | 13 Pages |
A hybrid optimization method is developed for fuel-optimal reconfigurations of a group of satellites flying in formation. The genetic algorithm performs a global search to find two-impulse trajectories, and primer vector analysis finds multiple-impulsive local optimal trajectories with the two-impulse trajectories as initial guesses. Hybrid optimization finds globally optimal trajectories for formation reconfigurations, including formation resizing, reassignment and reorientation maneuvers. Multiple-impulse trajectories reduce the fuel consumption from the two-impulse trajectories by up to 4.4% for those maneuvers. In real missions, satellites can follow two-impulse trajectories to gain the advantage of a smaller number of impulses, with the cost of slightly more propellant. The qualitative characteristics of the optimal trajectories are analyzed from the number of optimal trajectories found by hybrid optimization.