Article ID Journal Published Year Pages File Type
176676 Dyes and Pigments 2013 7 Pages PDF
Abstract

New conjugated small molecules 5,5′-bis{5-Octyl-2-(2,2′-bithiophen-5-yl)-4H-thieno[2,3-c]pyrrole-4,6-dione}-3,3′-di-octylsilylene-2,2′-bithiophene DTS(BTTPD)2 and 5,5′-bis{5-Octyl-2-(2,5-thiophenyl)-4H-thieno[2,3-c]pyrrole-4,6-dione}-3,3′-di-octylsilylene-2,2′-bithiophene DTS(TTPD)2 of the acceptor–π–donor–π–acceptor type end-capped with thieno[2,3-c]pyrrole-4,6-dione (TPD) units for small molecule solar cells have been prepared through coupling of dithienosilole and TPD units bridged with thienylene and bithienylene. They are soluble in common organic solvents and show an interesting absorption. These small molecules have very similar optical band gaps (1.87 eV and 1.92 eV) and fairly close highest occupied molecular orbital energy levels (−5.52 to −5.55 eV). The best solar cells using DTS(TTPD)2 as an electron donor and [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM) as an electron acceptor demonstrated efficient performance with an obviously high open-circuit voltage (VOC) of 0.97 V and a power conversion efficiency of 1.20% after annealing and using MoO3 as electron-blocking layer. The solar cells based on DTS(BTTPD)2 and PC61BM blend also exhibited a high VOC of 0.97 V under optimized conditions.

Graphical abstractFigure optionsDownload full-size imageDownload as PowerPoint slideHighlights► A new electron-withdrawing moiety TPD was applied in organic solar cells. ► Two new conjugated small molecules end-capped with TPD were synthesized. ► DTS(BTTPD)2 and DTS(TTPD)2 are soluble with a low band gap and crystallinity in solid state. ► Solar cells under different optimized conditions were fabricated and tested in air.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , , , , ,