Article ID Journal Published Year Pages File Type
1767074 Advances in Space Research 2009 5 Pages PDF
Abstract

Orbit position uncertainty is an important factor for collision avoidance issues. For a single object with high frequency historical data, we can attain its position uncertainty easily. But sometimes data is not enough for errors analysis, orbits need to be classified. In this paper error analysis is made from two-line element sets data (TLEs). The Simplified General Perturbations-4 (SGP4) propagator was used. Statistical errors of debris and R/B are given for lower-altitude orbits which are classified by perigee altitude and eccentricity. The errors results and analysis for SSO (the Sun synchronous orbit) typical orbits are obtained. At last atmospheric drag as a main cause of downrange errors in lower-altitude orbit is analyzed. BSTAR in TLEs is modified to improve prediction precision.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Space and Planetary Science
Authors
, , ,