Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1767306 | Advances in Space Research | 2008 | 7 Pages |
Ion dynamics in the near-Earth magnetotail region is examined during periods of fast Earthward flow with a two-dimensional (2-D) global-scale hybrid simulation. The simulation shows that shear Alfven waves are generated at x ∼ −10RE, where the strong earthward flow is arrested by the dipole field, and propagate along field lines from the equator to both southern and northern polar ionosphere. Non-gyrotropic ion velocity distributions occur where the large-amplitude Alfven waves are dominant. The simulation indicates that the Alfven waves are generated by interaction of the fast earthward flow with the stationary near-Earth plasma. Beam ions are found to be pitch-angle scattered and trapped in the wave field, leading to the non-gyrotropic ion distributions in the high-latitude plasma sheet boundary. In addition, significant particle heating and acceleration are found to occur behind the dipolarization front due to the effect of wave turbulence.