Article ID Journal Published Year Pages File Type
1767349 Advances in Space Research 2009 10 Pages PDF
Abstract

From the viewpoint of plasma particle measurements in the radiation belt, background noise is a serious problem. High-energy particles penetrating the sensor shielding generate spurious signals, and their count rate often can be comparable to the true signals. In order to attenuate such background noise during medium-energy (5–83 keV) electron measurements, we propose the double energy analyses (DEA) method. DEA is conducted by a combination of an electrostatic analyser (ESA) and avalanche photo-diodes (APDs); ESA and APD independently determine the energy of each incoming particle. By using the DEA method, therefore, the penetrating particles can be rejected when the two energy determinations are inconsistent; spurious noise are caused only when the deposited energy at an APD is by chance consistent with the measured energy by ESA. We formulate the noise count rate and show the advantage of DEA method quantitatively.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Space and Planetary Science
Authors
, , , , , , ,