Article ID Journal Published Year Pages File Type
1767600 Advances in Space Research 2007 4 Pages PDF
Abstract
The objective of this study was to measure differences in the chromosomal rearrangements found in the progeny of cells exposed to the same dose of X-rays or energetic iron ions, with emphasis on intra-chromosomal exchanges. We hybridized metaphase cells with human DNA probes specific for the p and q arms of the chromosome 1. The arm-specific probes allow a fast and reliable detection of both symmetrical and asymmetrical inter-chromosomal exchanges and inter-arm intra-changes (pericentric inversions) in the painted chromosome pair. We used this method to score aberrations in human peripheral blood lymphocytes exposed to 1 Gy of either 250 kVp X-rays or 1 GeV/n Fe-ions and harvested following 120 h in culture, including 2 h in colcemid for metaphase-block. Although iron ions are much more effective than X-rays in the induction of chromosomal aberrations formed during the first post-exposure cell cycle, we found that the effectiveness drops when daughter cells are scored at a late harvest time. In fact, no significant difference in the yield of simple interchanges or intra-changes was found for the two radiation qualities. On the other hand, complex-type exchanges, including rearrangements involving both intra- and inter-chromosomal exchanges, were much more frequent in the progeny of the population exposed to Fe-nuclei than to photons.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Space and Planetary Science
Authors
, , , , , , , ,