Article ID Journal Published Year Pages File Type
1768186 Advances in Space Research 2008 10 Pages PDF
Abstract
Secular variations of OH airglow (8,3) band and of the intensity-weighted temperature induced by a gravity wave packet at three latitudes in the northern hemisphere in the Mesosphere/Lower Thermosphere region are investigated using a 2-D, time-dependent, fully nonlinear OH chemistry-dynamics model. A net-cycled average survives due to wave transience and dissipation. The integrated OH (8,3) volume emission rates show a 20 percent increase induced by the wave packet. The corresponding intensity-weighted temperature shows an initial increase up to 2 percent then a gradual decrease for the remainder of the simulation time by the same wave packet. These secular variations could be mistaken as long-period or short-period waves in the airglow observations. Therefore, care must be taken when analyzing the data from observations.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Space and Planetary Science
Authors
, ,