Article ID Journal Published Year Pages File Type
1771066 Astroparticle Physics 2007 9 Pages PDF
Abstract
In this paper are presented the results of Monte Carlo simulations on the capability of the proposed NEMO-km3 telescope to detect TeV muon neutrinos from Galactic microquasars. For each known microquasar we compute the number of detectable events, together with the atmospheric neutrino and muon background events. We also discuss the detector sensitivity to neutrino fluxes expected from known microquasars, optimizing the event selection also to reject the background; the number of events surviving the event selection are given. The best candidates are the steady microquasars SS433 and GX339-4 for which we estimate a sensitivity of about 5 × 10−11 erg/cm2 s; the predicted fluxes are expected to be well above this sensitivity. For bursting microquasars the most interesting candidates are Cygnus X-3, GRO J1655-40 and XTE J1118+480: their analyses are more complicated because of the stochastic nature of the bursts.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Astronomy and Astrophysics
Authors
, , , , , , , , , , , , , , , , , , ,