Article ID Journal Published Year Pages File Type
1771830 Chinese Astronomy and Astrophysics 2010 11 Pages PDF
Abstract

With the sample of 105 emission line galaxies selected from the Sloan Digital Sky Survey Data Release 4 (SDSS DR4), we have investigated the relations of the [OII]λ3727/Hα flux ratio with the dust extinction, the ionization state of interstellar gas and the metal abundance of galaxies. It is found that the dust extinction correction has a significant effect on the [OII]λ3727/Hα flux ratio. Before and after the dust distinction correction is made, the mean [OII]λ3727/Hα flux ratios are 0.48 and 0.89, respectively. After the dust extinction is corrected, the dispersion of the distribution of F([OII]λ3727) as a function of F(Hα) is obviously reduced. The [OII]λ3727/Hα flux ratio of metal-poor galaxies decreases with the increasing ionization degree of interstellar gas, but this relation does not exist in metal-rich galaxies. Besides, it is found that the [OII]λ3727/Hα flux ratio is correlated with the metal abundance. When 12 + lg(O/H) > 8.5, the [OII]λ3727/Hα flux ratio decreases with the increasing metal abundance; for the galaxies of 12 + lg(O/H) > 8.5, the spectral flux ratio correlates positively with the metal abundance. Finally, by using the parameters of gas ionization degree and metal abundances of galaxies, the formulae for calculating the [OII]λ3727/Hα flux ratios of different types of galaxies are given. With the [OII]λ3727/Hα flux ratio given by these formulae, the star formation rate can be derived by using the [OII]λ3727-line flux, for the galaxies of the redshift z > 0.4, such as the large number of galaxies to be observed by the LAMOST telescope.

Related Topics
Physical Sciences and Engineering Physics and Astronomy Astronomy and Astrophysics