Article ID Journal Published Year Pages File Type
1772524 High Energy Density Physics 2013 6 Pages PDF
Abstract

In the field of high-energy density physics (HEDP), lasers in both the nanosecond and picosecond regimes can drive conditions in the laboratory relevant to a broad range of astrophysical phenomena, including gamma-ray burst afterglows and supernova remnants. In the short-pulse regime, the strong light pressure (>Gbar) associated ultraintense lasers of intensity I > 1018 W/cm2 plays a central role in many HEDP applications. Yet, the behavior of this nonlinear pressure mechanism is not well-understood at late time in the laser–plasma interaction. In this paper, a more realistic treatment of the laser pressure ‘hole boring’ process is developed through analytical modeling and particle-in-cell simulations. A simple Liouville code capturing the phase space evolution of ponderomotively-driven ions is employed to distill effects related to plasma heating and ion bulk acceleration. Taking into account these effects, our results show that the evolution of the laser-target system encompasses ponderomotive expansion, equipartition, and quasi-isothermal expansion epochs. These results have implications for light piston-driven ion acceleration scenarios, and astrophysical applications where the efficiencies of converting incident Poynting flux into bulk plasma flow and plasma heat are key unknown parameters.

Related Topics
Physical Sciences and Engineering Physics and Astronomy Astronomy and Astrophysics
Authors
, , ,