Article ID Journal Published Year Pages File Type
1772657 High Energy Density Physics 2011 8 Pages PDF
Abstract

For plasmas in LTE at moderate or low temperatures (1–50 eV), the statistical approach for calculating emission or absorption spectra may become inaccurate and need improvement to account for the Boltzmann factor in the population of the levels. In this work, corrections to the transition rates are computed by using the moments of emission or absorption zones, which represent the set of levels within a configuration that provide the dominant part of the emissivity (or opacity). Partition functions are also improved by using high-order moments of level energy distributions. Corrections to the statistical models are derived in a non-relativistic framework as a function of these moments, which can be deduced from already published formulas. Numerical comparisons of detailed line-by-line and statistical calculations are presented that clearly illustrate the importance of correcting the models at low temperatures. Thus, these corrections are of great interest for applications such as Warm Dense Matter, LTE photo-absorption experiments where the targets are heated to ∼Te = 20 eV and astrophysical plasmas.

Related Topics
Physical Sciences and Engineering Physics and Astronomy Astronomy and Astrophysics
Authors
, , , , ,