Article ID Journal Published Year Pages File Type
1772682 High Energy Density Physics 2012 8 Pages PDF
Abstract
Radiative emission from alloyed Al single, double and compact cylindrical wire arrays have been studied using the 1 MA Zebra UNR generator. Single planar wire arrays using ten wires and double planar wire arrays and compact cylindrical wire arrays (CCWA) that both had sixteen wires were utilized. The wire composition is Al-5056 (95% of Al and 5% of Mg). We have observed that implosion of these alloyed Al wire loads generated optically thick Al plasmas that can be diagnosed using K-shell Mg lines. In particular, among the considered loads, the K-shell lines of Al from implosions of the double planar wire arrays have the highest optical depth for He-like Al resonance transitions, which occurred near the stagnation phase. X-ray time-gated and time-integrated spectra and pinhole images as well as photoconductive detectors signals were analyzed to provide information on the plasma parameters; electron temperatures and densities, implosion dynamics features and power and yields of the X-ray radiation. Previously developed non-LTE models were applied to model axially-resolved time-integrated, as well as time-gated spatially-integrated, K-shell spectra from Al and Mg. The derived time-dependent electron temperature, density and axial opacity were studied and compared. In addition, the wire ablation dynamics model (WADM) was used to calculate the kinetic energy of the plasma, which with the aid of a Local Thermal Equilibrium (LTE) magneto-hydrodynamics (MHD) simulation, allowed to estimate the precursor and stagnated z-pinch plasma electron temperatures from implosions of wire array loads.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Astronomy and Astrophysics
Authors
, , , , , , , , ,