Article ID Journal Published Year Pages File Type
1773250 Icarus 2013 6 Pages PDF
Abstract
We use a statistical-thermodynamic model to investigate the formation and composition of noble-gas-rich clathrates on Pluto's surface. By considering an atmospheric composition close to that of today's Pluto and a broad range of surface pressures, we find that Ar, Kr and Xe can be efficiently trapped in clathrates if they formed at the surface, in a way similar to what has been proposed for Titan. The formation on Pluto of clathrates rich in noble gases could then induce a strong decrease in their atmospheric abundances relative to their initial values. A clathrate thickness of order of a few centimeters globally averaged on the planet is enough to trap all Ar, Kr and Xe if these noble gases were in protosolar proportions in Pluto's early atmosphere. Because atmospheric escape over an extended period of time (millions of years) should lead to a noble gas abundance that either remains constant or increases with time, we find that a potential depletion of Ar, Kr and Xe in the atmosphere would best be explained by their trapping in clathrates. A key observational test is the measurement of Ar since the Alice UV spectrometer aboard the New Horizons spacecraft will be sensitive enough to detect its abundance ∼10 times smaller than in the case considered here.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Space and Planetary Science
Authors
, , , , , , , , ,