Article ID Journal Published Year Pages File Type
1774240 Icarus 2010 10 Pages PDF
Abstract

We use data from the VIMS instrument on board the Cassini spacecraft to construct high sensitivity and high spatial-resolution maps of the locations of tropospheric clouds on Titan in the late northern winter season during which the Cassini prime mission took place. These observations show that, in this season, clouds on Titan are strongly hemispherically asymmetric. Mid-latitude clouds, in particular, occur only in the southern hemisphere and have not ever been observed in the north. Such an asymmetry is in general agreement with circulation models where sub-solar surface heating controls the locations of clouds and appears in conflict with models where perennial polar hazes prevent significant summertime polar heating from affecting the circulation. The southern mid-latitude clouds appear to be distributed uniformly in longitude, in contrast to some previous observations. Southern high-latitude clouds exhibit a significant concentration, however, between about 180° and 270°E longitude. A spatially and temporally uniform cloud always appears northward of ∼50°N latitude. This cloud appears unchanged over the course of the observations, consistent with the interpretation that it is caused by continuous ethane condensation as air subsides and radiatively cools through the tropopause. The location of this cloud likely provides a direct tracer of elements of north polar atmospheric circulation, potentially allowing continuous monitoring of circulation changes as Titan passes through equinox into north polar spring and summer. We show that a similar analysis of this dataset by Rodriguez et al. (2009) contains substantial errors and should not be used.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Space and Planetary Science
Authors
, , ,