Article ID Journal Published Year Pages File Type
1774266 Icarus 2010 12 Pages PDF
Abstract

Impacts of comets and asteroids play an important role in volatile delivery on the Moon. We use a novel method for tracking vapor masses that reach escape velocity in hydrocode simulations of cometary impacts to explore the effects of volatile retention. We model impacts on the Moon to find the mass of vapor plume gravitationally trapped on the Moon as a function of impact velocity. We apply this result to the impactor velocity distribution and find that the total impactor mass retained on the Moon is approximately 6.5% of the impactor mass flux. Making reasonable assumptions about water content of comets and the comet size–frequency distribution, we derive a water flux for the Moon. After accounting for migration and stability of water ice at the poles, we estimate a total 1.3×1081.3×108–4.3×1094.3×109 metric tons of water is delivered to the Moon and remains stable at the poles over 1 Ga. A factor of 30 uncertainty in the estimated cometary impact flux is primarily responsible for this large range of values. The calculated mass of water is sufficient to account for the neutron fluxes poleward of 75° observed by Lunar Prospector. A similar analysis for water delivery to the Moon via asteroid impacts shows that asteroids provide six times more water mass via impacts than comets.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Space and Planetary Science
Authors
, , , ,