Article ID Journal Published Year Pages File Type
1774344 Icarus 2011 14 Pages PDF
Abstract

High quality VNIR spectra of 15 Vestoids, small asteroids that are believed to originate from Vesta, were collected and compared to laboratory spectra and compositional data for selected HED meteorites. A combination of spectral parameters such as band centers, and factors derived from Modified Gaussian Model fits (band centers, band strengths, calculation of the low to high-Ca pyroxene ratio) were used to establish if each Vestoid appeared most like eucrite or diogenite material, or a mixture of the two (howardite). This resulted in the identification of the first asteroid with a ferroan diogenite composition, 2511 Patterson. This asteroid can be used to constrain the size of diogenite magma chambers within the crust of Vesta. The Vestoids indicate that both large-scale homogeneous units (>5 km) and smaller-scale heterogeneity (<1 km) exist on the surface of Vesta, as both monomineralogic (eucrite or diogenite material alone) and mixed (both eucrite and diogenite) spectra are observed. The small-scale of the variation observed within the Vestoid population is predicted by the partial melting model, which has multiple intrusions penetrating into the crust of Vesta. It is much more difficult to reconcile the observations here with the magma ocean model, which would predict much more homogeneous layers on a large-scale both at the surface and with depth.

► We investigate the mineralogy of Vestoids. ► We identify the first ferroan-diogenite Vestoid. ► Vestoids contain large-scale homogeneous units and small-scale heterogeneity. ► Small-scale variation seems to fit best with a partial melting model for Vesta.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Space and Planetary Science
Authors
, , , , ,