Article ID Journal Published Year Pages File Type
1774599 Icarus 2011 11 Pages PDF
Abstract

Phosphorus is a key element in biology and acts in many critical biochemical functions. The chemistry of phosphorus in the outer Solar System has not yet been quantified, hence the astrobiological relevance of phosphorus to possible life on places like Titan is unconstrained. We evaluate phosphorus chemistry on Titan using a combination of modeling and laboratory techniques. We show that phosphorus chemistry on Titan consists of exogenous phosphates and reduced oxidation state phosphorus compounds, and accretionary phosphine. Accretionary phosphorus is shown to be delivered primarily by rocks and ices in the saturnian sub-nebula, and heating during accretion concentrates phosphine in the crust of Titan. The exogenous compounds are capable of performing biologically-relevant chemistry, however they are active only in environments with substantial liquid water, either pure, or as a mixture with NH3 or nitrile compounds. In contrast, we show that phosphine is soluble in methane and ethane on Titan’s surface, hence phosphine likely participates in the hydrocarbon cycle on Titan. The lack of mobility of phosphate compounds on Titan’s surface suggests that if life is present on Titan, it must have a fundamentally different biochemistry than does terrestrial life.

Research highlights► We determine phosphorus speciation on Titan. ► Phosphates are poorly mobile on Titan, hence DNA-like life is not expected. ► Phosphine is primary P source on Titan, and participates in hydrocarbon cycle.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Space and Planetary Science
Authors
, , ,