Article ID Journal Published Year Pages File Type
1774656 Icarus 2010 10 Pages PDF
Abstract

Coupled thermal–orbital histories of early lunar evolution are considered in a simple model. We consider a plagioclase lid, overlying a magma ocean, overlying a solid mantle. Tidal dissipation occurs in the plagioclase lid and heat transport is by conduction and melt migration. We find that large orbital eccentricities can be obtained in this model. We discuss possible consequences of this phase of large eccentricities for the shape of the Moon and geochronology of lunar samples. We find that the orbit can pass through the shape solution of Garrick-Bethell et al. (Garrick-Bethell, I., Wisdom, J., Zuber, M. [2006]. Science 313, 652), but we argue that the shape cannot be maintained against elastic deformation as the orbit continues to evolve.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Space and Planetary Science
Authors
, , ,