Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1774868 | Icarus | 2008 | 21 Pages |
Abstract
Prior models of lunar-forming impacts assume that both the impactor and the target protoearth were not rotating prior to the Moon-forming event. However, planet formation models suggest that such objects would have been rotating rapidly during the late stages of terrestrial accretion. In this paper I explore the effects of pre-impact rotation on impact outcomes through more than 100 hydrodynamical simulations that consider a range of impactor masses, impact angles and impact speeds. Pre-impact rotation, particularly in the target protoearth, can substantially alter collisional outcomes and leads to a more diverse set of final planet-disk systems than seen previously. However, the subset of these impacts that are also lunar-forming candidates-i.e. that produce a sufficiently massive and iron-depleted protolunar disk-have properties similar to those determined for collisions of non-rotating objects [Canup, R.M., Asphaug, E., 2001. Nature 412, 708-712; Canup, R.M., 2004a. Icarus 168, 433-456]. With or without pre-impact rotation, a lunar-forming impact requires an impact angle near 45 degrees, together with a low impact velocity that is not more than 10% larger than the Earth's escape velocity, and produces a disk containing up to about two lunar masses that is composed predominantly of material originating from the impactor. The most significant differences in the successful cases involving pre-impact spin occur for impacts into a retrograde rotating protoearth, which allow for larger impactors (containing up to 20% of Earth's mass) and provide an improved match with the current Earth-Moon system angular momentum compared to prior results. The most difficult state to reconcile with the Moon is that of a rapidly spinning, low-obliquity protoearth before the giant impact, as these cases produce disks that are not massive enough to yield the Moon.
Related Topics
Physical Sciences and Engineering
Earth and Planetary Sciences
Space and Planetary Science
Authors
Robin M. Canup,