Article ID Journal Published Year Pages File Type
1775088 Icarus 2008 11 Pages PDF
Abstract

Condensates produced in a laboratory condensation experiment of a refractory Ca–SiO–H2–O2 vapor define four specific and predictable deep metastable eutectic calciosilica compositions. The condensed nanograins are amorphous solids, including those with the stoichiometric CaSiO3 pyroxene composition. In evolving dust-condensing astronomical environments they will be highly suitable precursors for thermally supported, dust-aging reactions whereby the condensates form more complex refractory silicates, e.g., diopside and wollastonite, and calcite and dolomite carbonates. This kinetically controlled condensation experiment shows how the aging of amorphous refractory condensates could produce the same minerals that are thought to require high-temperature equilibrium condensation. We submit that evidence for this thermal annealing of dust will be the astronomical detection of silica (amorphous or crystalline) that is the common, predicted, by-product of most of these reactions.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Space and Planetary Science
Authors
, , , ,