Article ID Journal Published Year Pages File Type
1776060 Icarus 2006 8 Pages PDF
Abstract
Though Titan is in synchronous rotation around Saturn, it experiences gravitational tides as a consequence of its eccentric orbit. It is proposed that the vertical transport of aerosols by these tides produces the haze layers in Titan's upper atmosphere. Analysis shows that the zonal winds in Titan's superrotating atmosphere have a profound influence on which tidal components are effective in establishing the multiple detached-haze layers. If the Huygens Doppler winds are representative of the equatorial global superrotation, then the westward propagating s=2 mode is the responsible tidal component even though its forcing is significantly weaker than that of the s=0 and eastward s=2 components. The eastward s=2 tidal mode is eliminated by critical levels while the s=0 mode is viscously damped in the strong high altitude winds. At polar latitudes, however, the gravest s=0 mode is the one most likely to produce layering. It is also suggested that the atmospheric gravitational tides could be responsible for decelerating the superrotating atmosphere as seen in the Huygens Doppler wind velocity profile at about 80 km altitude.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Space and Planetary Science
Authors
, ,