Article ID Journal Published Year Pages File Type
1776176 Journal of Atmospheric and Solar-Terrestrial Physics 2016 12 Pages PDF
Abstract
Measurements of ground-level visible sunlight (400-600 nm) from Summit, Greenland over the period August 2004 through October 2014 define the attenuation provided by cloudiness, including its dependence on solar elevation and season. The long-term mean cloud-attenuation increases with increasing solar zenith angle, consistent with radiative transfer calculations which treat a cloud as a plane parallel layer with a strong bias toward forward scattering and an albedo for diffuse radiation near 0.1. The ratio of measured irradiance to clear-sky irradiance for solar zenith angles greater than 66° has a small, but statistically significant, positive correlation with the previous day's magnetic activity as measured by the daily Ap index, but no clear relationship exists between the irradiance ratio and daily changes in the ground-level neutron flux measured at Thule over the time frame considered. A high value of Ap on one day tends to be followed by a day whose ground-level solar irradiance is slightly greater than would occur otherwise. In an average sense, the visible irradiance following a day with Ap>16 exceeds that following a day with Ap≤16 by 1.2-1.3% with a 95% confidence range of approximately ±1.0%. The results are broadly compatible with small changes in atmospheric scattering following magnetic disturbances.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geophysics
Authors
,