Article ID Journal Published Year Pages File Type
1777566 Journal of Atmospheric and Solar-Terrestrial Physics 2009 10 Pages PDF
Abstract

The effect of carbon dioxide (CO2) cooling on trends of hmF2 and NmF2 are investigated using a coupled thermosphere and ionosphere general circulation model. Model simulations indicate that CO2 cooling not only causes contraction of the upper atmosphere and changes of neutral and ion composition but also changes dynamics and electrodynamics in the thermosphere/ionosphere. These changes determine the altitude dependence of ionospheric trends and complex latitudinal, longitudinal, diurnal, seasonal, and solar cycle variations of trends of hmF2 and NmF2. Under the CO2 cooling effect, trends of NmF2 are negative with magnitude from 0% to ∼−40% for doubled CO2, depending on location, local time, season, and solar activity. The corresponding trends of hmF2 are mostly negative with a magnitude from 0 to −40 km, but can be positive with a magnitude from 0 to ∼10 km at night, with maximum positive trends occurring after midnight under solar minimum conditions.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geophysics
Authors
, , , ,