Article ID Journal Published Year Pages File Type
1777606 Journal of Atmospheric and Solar-Terrestrial Physics 2009 8 Pages PDF
Abstract
The projection of the plasmapause magnetic-field lines to low altitudes, where the light-ion chemistry is dominated by O+, tends to occur near the minimum electron density in the main (midlatitude) electron density trough at night. With increasing altitude in the trough, where H+ emerges as the dominant ion on the low-latitude boundary, we have found cases where the plasmapause field lines are located on the sharp low-latitude side of the trough as expected if this topside ionosphere H+ distribution varies in step with the plasmapause gradient in the distant plasmasphere. These conclusions are based on near-equatorial crossings of the plasmapause (corresponding to the steep gradient in the dominant species H+) by the Explorer-45 satellite as determined from electric-field measurements by Maynard and Cauffman in the early 1970s and ISIS-2 ionospheric topside-sounder measurements. The former data have now been converted to digital form and made available at http://nssdcftp.gsfc.nasa.gov. The latter provide samples of nearly coincident observations of ionospheric main trough crossings near the same magnetic-field lines of the Explorer 45-determined equatorial plasmapause. The ISIS-2 vertical electron density profiles are used to infer where the F-region transitions from an O+ to a H+ dominated plasma through the main trough boundaries.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geophysics
Authors
, , , , ,