Article ID Journal Published Year Pages File Type
1777869 Journal of Atmospheric and Solar-Terrestrial Physics 2008 7 Pages PDF
Abstract

The tropospheric zenith total delay (ZTD) derived from very long baseline interferometry (VLBI) is an important parameter of the atmosphere, reflecting various atmosphere-related processes and variations. In this paper, ZTD time series of the IVS rapid combined tropospheric product (2002–2006) with a 1-h resolution are used for the first time to investigate the diurnal and semidiurnal oscillations. Significant diurnal and semidiurnal variations of ZTD are found at all VLBI stations. The amplitude of the diurnal cycle S1 is 0.6–1.2 mm at most of the VLBI stations, and the amplitude of the semidiurnal cycle S2 is 0.2–1.9 mm, which nearly accord with the surface pressure tides S1/S2 and co-located GPS estimated S1/S2. The results indicate that the S1 and S2 behaviors are mainly dominated by the hydrostatic component, namely pressure tides. In general, the semidiurnal S2 amplitudes are slightly larger than the diurnal S1. While S1 shows no clear dependency on site altitude, S2 has a regular distribution with VLBI site altitude. The results are in accordance with predictions of the classic tidal theory [Chapman, S., Lindzen, R.S., 1970. Atmospheric Tides, Gordon and Breach, New York].

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geophysics
Authors
, , , ,