Article ID Journal Published Year Pages File Type
1778611 Journal of High Energy Astrophysics 2015 9 Pages PDF
Abstract

The two main advantages of space-based observation of extreme energy (≳5×1019 eV≳5×1019 eV) cosmic rays (EECRs) over ground based observatories are the increased field of view and the full-sky coverage with nearly uniform systematics across the entire sky. The former guarantees increased statistics, whereas the latter enables a clean partitioning of the sky into spherical harmonics. The discovery of anisotropies would help to identify the long sought origin of EECRs. We begin an investigation of the reach of a full-sky space-based experiment such as EUSO to detect anisotropies in the extreme-energy cosmic-ray sky compared to ground based partial-sky experiments such as the Pierre Auger Observatory and Telescope Array. The technique is explained here, and simulations for a Universe with just two nonzero multipoles, monopole plus either dipole or quadrupole, are presented. These simulations quantify the advantages of space-based, all-sky coverage.

Related Topics
Physical Sciences and Engineering Physics and Astronomy Astronomy and Astrophysics
Authors
, ,