Article ID Journal Published Year Pages File Type
1779801 New Astronomy 2006 9 Pages PDF
Abstract

The gravitational-wave spectrum emitted by a non-axisymmetric torus rotating at an angular velocity ΩT, is derived in terms of a structure function representing a combination of sausage-tilt modes in the torus in the limit of an incompressible fluid. The analysis of the gravitational-wave spectrum is then applied to a model proposed recently, in which a highly magnetized torus interacts with a stellar mass, Kerr black hole via poloidal field lines that connect the torus and the horizon. The deformation of the torus results from global magnetic instabilities when the magnetic field strength inside the torus exceeds a few times 1015 Gauss. The dynamics of the system is illustrated using a non-MHD toy model. It is found that, quite generally, most of the gravitational-wave energy emitted is in the frequency range of sensitivity of LIGO and Virgo.

Keywords
Related Topics
Physical Sciences and Engineering Physics and Astronomy Astronomy and Astrophysics
Authors
, , ,