Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1780117 | New Astronomy Reviews | 2008 | 6 Pages |
Abstract
The exact conditions for the supernova high-entropy wind (HEW) as one of the favored sites for the rapid neutron-capture (r-) process still cannot be reproduced selfconsistently in present hydrodynamic simulations. Therefore, we have performed large-scale network calculations within a parameterized HEW model to constrain the necessary conditions for a full r-process, and to compare our results with recent astronomical observations. A superposition of entropy trajectories with model-inherent weightings results in an excellent reproduction of the overall solar-system isotopic abundances (Nr,â) of the “main” r-process elements beyond Sn. For the lighter r-elements, our model supports earlier qualitative ideas about a multiplicity of nucleosynthesis processes in the Fe-group region. In the high-entropy-wind scenario, these suggestions are quantified, and the origin of the “missing” abundances to Nr,â is determined to be a rapid primary charged-particle (α-) process, thus excluding a classical “weak” neutron-capture component. This explains the recent halo-star observations of a non-correlation of Cu-Ge and Sr-Zr with metallicity [Fe/H] and r-process enrichment [Eu/H]. Moreover, for the first time a partial correlation with the “main” r-process is identified for Ru and Pd.
Keywords
Related Topics
Physical Sciences and Engineering
Physics and Astronomy
Astronomy and Astrophysics
Authors
K.-L. Kratz, K. Farouqi, L.I. Mashonkina, B. Pfeiffer,