Article ID Journal Published Year Pages File Type
1780640 NRIAG Journal of Astronomy and Geophysics 2013 10 Pages PDF
Abstract
Attenuation of seismic waves in central Egypt had never been studied before. The results of the research on the seismic attenuation are based upon the information collected by the seismological network from 1998 to 2011. 855 earthquakes were selected from the Egyptian seismological catalog, with their epicenter distances between 15 and 150 km, their magnitudes ranging from 2 and 4.1 and focal depths reaching up to 30 km. The first systematic study of attenuation derived from the P-, S- and coda wave in the frequency range 1-24 Hz is presented. In the interpretation of the results both single and multiple scattering in a half space are considered. The single scattering model proposed by Sato (1977) was used. Two methods, the coda (Qc) and the Multiple Lapse Time Window (MLTW) method are used. The aim of this study is to validate these interpretations in the region and to try to identify the effects of attenuation due to intrinsic (Qi) and scattering attenuation (Qsc). The mean Qc value calculated was Qc = (39 ± 1)f1.0±0.009. The average Qc at 1.5 Hz is (53 ± 6) and Qc = (900 ± 195) at 24 Hz with Qo ranging between 23 and 107, where η ranging between 0.9 and 1.3. The quality factor (Q) was estimated from spectra of P- and S-waves by applying a spectral ratio technique. The results show variations in Qp and QS as a function of frequency, according to the power law Q = 56η1.1. The seismic albedo is 0.7 at all stations and it mean that the earthquake activity is due to tectonic origin. The attenuation and frequency dependency for different paths and the correlation of the results with the geotectonic of the region are presented. The Qc values were calculated and correlated with the geology and tectonics of the area. The relatively low Qo and the high frequency dependency agree with the values of a region characterized by a low tectonic activity and vise versa.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Astronomy and Astrophysics
Authors
, ,