Article ID Journal Published Year Pages File Type
1780796 Physics of the Dark Universe 2012 24 Pages PDF
Abstract

Weakly interacting massive particles (WIMPs) remain a prime candidate for the cosmological dark matter (DM), even in the absence of current collider signals that would unambiguously point to new physics below the TeV scale. The self-annihilation of these particles in astronomical targets may leave observable imprints in cosmic rays of various kinds. In this review, we focus on gamma rays which we argue to play a pronounced role among the various possible messengers. We discuss the most promising spectral and spatial signatures to look for, give an update on the current state of gamma-ray searches for DM and an outlook concerning future prospects. We also assess in some detail the implications of a potential signal identification for particle DM models as well as for our understanding of structure formation. Special emphasis is put on the possible evidence for a 130 GeV line-like signal that we recently identified in the data of the Fermi gamma-ray space telescope.

Related Topics
Physical Sciences and Engineering Physics and Astronomy Astronomy and Astrophysics
Authors
, ,